Bayesian Approach in a Learning-Based Hyperspectral Image Denoising Framework

نویسندگان

چکیده

Hyperspectral images are corrupted by a combination of Gaussian-impulse noise. On one hand, the traditional approach handling denoising problem using maximum posteriori criterion is often restricted time-consuming iterative optimization process and design hand-crafted priors to obtain an optimal result. other discriminative learning-based approaches offer fast inference speed over trained model; but highly sensitive noise level used for training. A model with loss function which does not accord Bayesian degradation leads sub-optimal results. In this paper, we training paradigm emphasizing role functions; similar as observed in model-based methods. As result; functions derived setting employed neural network boosts performance. Extensive analysis experimental results on synthetically real hyperspectral dataset suggest potential applicability proposed technique under wide range homogeneous heterogeneous noisy settings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bayesian approach for image denoising in MRI

Magnetic Resonance Imaging (MRI) is a notable medical imaging technique that is based on Nuclear Magnetic Resonance (NMR). MRI is a safe imaging method with high contrast between soft tissues, which made it the most popular imaging technique in clinical applications. MR Imagechr('39')s visual quality plays a vital role in medical diagnostics that can be severely corrupted by existing noise duri...

متن کامل

A New Shearlet Framework for Image Denoising

Traditional noise removal methods like Non-Local Means create spurious boundaries inside regular zones. Visushrink removes too many coefficients and yields recovered images that are overly smoothed. In Bayesshrink method, sharp features are preserved. However, PSNR (Peak Signal-to-Noise Ratio) is considerably low. BLS-GSM generates some discontinuous information during the course of denoising a...

متن کامل

An Approach towards Improved Hyperspectral Image Denoising

Amount of noise included in a hyperspectral image limits its application and has a negative impact on hyperspectral image classification, unmixing, target detection, and so on. The data that are contaminated with noise can cause a failure to extract valuable information and hamper further interpretation. The presence of noise in the image, extraction of all the useful information becomes diffic...

متن کامل

Clustered Compressive Sensing- Based Image Denoising Using Bayesian Framework

This paper provides a compressive sensing (CS) method of denoising images using Bayesian framework. Some images, for example like magnetic resonance images (MRI) are usually very weak due to the presence of noise and due to the weak nature of the signal itself. So denoising boosts the true signal strength. Under Bayesian framework, we have used two different priors: sparsity and clusterdness in...

متن کامل

Bayesian ensemble learning for image denoising

Natural images are often affected by random noise and image denoising has long been a central topic in Computer Vision. Many algorithms have been introduced to remove the noise from the natural images, such as Gaussian, Wiener filtering and wavelet thresholding. However, many of these algorithms remove the fine edges and make them blur. Recently, many promising denoising algorithms have been in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2021

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2021.3137656